Print

Print


Apropos of nothing in particular...

A simple, systematic morphology based on consonant-only roots.

There are 20 consonants (C): b d f g h j k l m n p r s t v w y z c(ch) x(sh)
There are 5 pure vowels (V): a e i o u
There are 15 diphthongs (D): ai au ea eo eu ia ie io iu oa oe oi ua ue ui
Two consecutive syllables may not contains a diphthong (D).
Optionally, at most one syllable may contain the letter n(or m) after
the vowel or diphthong: tanto, tampu, ...

For single-consonant roots there are 5 vowel patterns: CV CD VCV VCD DCV
The number of permutations of vowels in each pattern, including the
possible presence of an optional m/n, are:
	CV - e.g. ta, to, ... 2 * 5 = 10
	CD - e.g. toi, tua, ... 2 * 15 = 30
	VCV - e.g. ata, ento, ... 3 * 5^2 = 75
	VCD - e.g. atian, etoi, ... 3 * 5 * 15 = 225
	DCV - e.g. aita, ionte, ... 3 * 5 * 15 = 225
There are 20 single-consonant roots, times 530 vowel patterns for a
total of 10,600 single-consonant words.

For two-consonant roots there are 8 vowel patterns: CVCV CVCD CDCV
VCVCV VCVCD VCDCV DCVCV DCVCD
The number of permutations of vowels in each pattern, including the
possible presence of an optional m/n, are:
	CVCV - e.g. manta, muto, ... 3 * 5^2 = 75
	CVCD - e.g. matio, mentua, ... 3 * 5 * 15 = 225
	CDCV - e.g. miuta, muaten, ... 3 * 5 * 15 = 225
	VCVCV - e.g. amatu, amenti, ... 4 * 5^3 = 500
	VCVCD - e.g. amatio, amentua, ... 4 * 5^2 * 15 = 1500
	VCDCV - e.g. amianto, imoaten, ... 4 * 5^2 * 15 = 1500
	DCVCV - e.g. oimata, uameto, ... 4 * 5^2 * 15 = 1500
	DCVCD - e.g. eamentio, uimatua, ... 4 * 5 * 15^2 = 4500
There are 20^2 = 400 two-consonant roots, times 10,025 vowel patterns
for a total of 4,010,000 two-consonant words.

For three-consonant roots there are 13 vowel patterns:
	CVCVCV CVCVCD CVCDCV CDCVCV CDCVCD
	VCVCVCV VCVCVCD VCVCDCV VCDCVCV VCDCVCD
	DCVCVCV DCVCVCD DCVCDCV
The number of permutations of vowels in each vowel pattern, including
the possible presence of an optional m/n, are:
	CVCVCV - e.g. takula, tukali, ... 4 * 5^3 = 500
	CVCVCD - e.g. tankulia, tukalua, ... 4 * 5^2 * 15 = 1500
	CVCDCV - e.g. takuala, tukuile, ... 4 * 5^2 * 15 = 1500
	CDCVCV - e.g. taukula, tiukanli, ... 4 * 5^2 * 15 = 1500
	CDCVCD - e.g. tuakalio, tiukelea, ... 4 * 5 * 15^2 = 4500
	VCVCVCV - e.g. antakula, utukalin, ... 5 * 5^4 = 3125
	VCVCVCD - e.g. atakulia, utunkalua, ... 5 * 5^3 * 15 = 9375
	VCVCDCV - e.g. atakiula, utukauli, ... 5 * 5^3 * 15 = 9375
	VCDCVCV - e.g. ataukula, utuikali, ... 5 * 5^3 * 15 = 9375
	VCDCVCD - e.g. antaukulia, utuikalua, ... 5 * 5^2 * 15^2 = 28125
	DCVCVCV - e.g. aitakulan, ietukali, ... 5 * 5^3 * 15 = 9375
	DCVCVCD - e.g. aitakunlia, ietukaliu, ... 5 * 5^2 * 15^2 = 28125
	DCVCDCV - e.g. aitakuila, ietakauli, ... 5 * 5^2 * 15^2 = 28125
There are 20^3 = 8000 three-consonant roots times 134,500 vowel
patterns for a total of 1,076,000,000 three-consonant words.

The grand total for one, two, and three consonant words is
1,080,020,600 possible words.

There might also be the option of allowing at most one non-terminal
pure vowel to be modified with r giving a few billion additional
possible words such as torkala, amartu, erto, barziu, pargonya, ...

Certain vowel patterns might mark certain grammatical and semantic
categories. For example ---XaXu might be a singular noun (e.g. atakalu
- hammer), ---XuXia the plural of that noun (e.g. atakulia - hammers),
---XienXo the noun used as a verb (e.g. atakalu - hammer(n) ->
atakienlo - to hammer(v); butayu - lost-thing -> butienyo - to lose].
A person who performs the action of the verb ---XienXo might be
---XuXion (e.g. atakulion - hammerer), and so on. Other vowel patterns
could mark opposite actions (aiX--- e.g. aibutienyo - to find,
aibutayu - found-thing), lack of a given attribute (em/nX--- e.g.
entiakula - unhammered, embutiya - unfound), and so on.

--gary